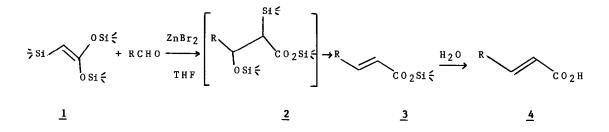

STEREOSELECTIVE SYNTHESIS OF (E)- α , β - UNSATURATED ACIDS FROM C,0,0 - TRI (TRIMETHYLSILYL) KETENE ACETAL AND ALDEHYDES.

Moncef BELLASSOUED and Marcel GAUDEMAR

Université Pierre et Marie Curie (Paris VI), Laboratoire de Synthèse Organométallique, 4, Place Jussieu, 75230 - PARIS Cedex 05, France.

Abstract : Aldehydes are converted into (E) – α , β – unsaturated carboxylic acids by means of C,0,0 – tri(trimethylsilyl) ketene acetal and a catalytic amount of ZnBr₂.


Several ways have been described to transform aldehydes into α , β -unsaturated esters. However, the hydrolysis of the resultant esters to the corresponding α , β -unsaturated acids can sometimes result in low yields¹. To our knowledge, three general methods could be used for the <u>direct</u> conversion of aldehydes to α , β -unsaturated carboxylic acids : the Knoevenagel reaction with malonic acid², the Peterson olefination with trimethylsilylacetic acid diamion³ and the Wittig-Hormer type reactions^{4,5} (scheme).

Scheme

However, the Knoevenagel reaction gave low yields with enolisable aldehydes⁶, the Peterson olefination suffered from a lack of stereoselectivity and the Wittig-Horner reaction required fairly stringent conditions to isolate the α , β -unsaturated acids. Diethyl trimethylsiloxycarbonylmethane phosphonate, which is prepared from trimethylsilyl bromoacetate by way of the Arbuzov reaction, compensates this disadvantage⁷.

We have reported that ketene bis (trimethylsilyl) acetals react with aldehydes to give aldol type products in the presence of an activating agent as catalyst 8-12. We wish to show herein that C,0,0-tri (trimethylsilyl) ketene acetal 1 could react at room temperature with aldehydes to directly give the corresponding α , β -unsaturated acids in the Peterson manner. In the hope of realizing this transformation, substrate <u>1</u> (20 m mol, 5.52 g) in 10 ml of THF was added to a THF (20 ml) solution of benzaldehyde (22 m mol, 2.4 g) and ZnBr₂ (2.2 m mol, 0.5 g) at room temperature under a nitrogen atmosphere. The mixture was allowed to stir at 20°C for 24 h. Acido-basic work-up, to remove any remaining non-acidic organic material, affords (E)-cinnamic acid in almost quantitative yield (table, entry 2).

As shown in the table, aliphatic aldehydes react in the same way to produce α,β -unsaturated carboxylic acids in fairly good yields. Other catalysts can be used such as TBAF, TiCl₄ or CsF (entries 3, 6, 10). The non-reactivity of ketones (20, Ph-C-Me) demonstrates the selectivity and synthetic utility of our method.

In a similar work on the reactivity of 0-methyl C,0-bis (trimethylsilyl) ketene acetal towards aldehydes, Mutsuda¹³ has shown that the geometrical ratio of the obtained α , β -unsaturated esters reflects the diastereometric ratio of the intermediate β -hydroxy α -silylesters. In our case, attempts to isolate the intermediate $\underline{2}$ have failed. Before aqueous work-up, we directly obtained compound $\underline{3}$.

To our knowledge, the requisite reagent <u>1</u> was prepared for the first time by $Emde^{14}$ using trimethylsilyltriflate and trimethylsilylacetic ester. However, a mixture of three silylated products was obtained from which compound <u>1</u> must be separated. We have found that C,O,O - tri (trimethylsilyl) ketene acetal <u>1</u> can be easily obtained in excellent yield from α - trimethylsilyl trimethylsilylacetic ester¹⁵ 5, LDA and chlorotrimethylsilane.

$$LDA, THF, -78^{\circ}$$

$$\Rightarrow Si - CH_2 - CO_2Si \notin \underbrace{1}_{\text{ClSi} \notin, -78^{\circ} \Rightarrow 20^{\circ}} \underline{1} (Yield = 91 \%)^{16}$$

We note that the lithio derivative of <u>5</u> reacts readily with benzaldehyde to give, after acidic hydrolysis, cinnamic acid without any stereoselectivity (E : Z = 1 / 1 ; yield = 86 %) as does trimethylsilylacetic acid diamion ³.

4553

TABLE

Entry	R	Reaction conditions	Yield ^a (%) of <u>4</u>
1	Ph	no catalyst, THF, reflux, 24 h	0
2	Ph	ZnBr ₂ ^b , THF, rt, 24 h	95
3	Ph	TBAF ^b , THF, rt, 4 h	97
4	Me	ZnBr2 ^b , THF, rt, 14 h	83
5	Et	ZnBr2 ^b , THF, rt, 14 h	75
6	Et	$TiCl_4^c$, CH ₂ Cl ₂ , -70°, 3 h	60
7	n-Pr	ZnBr2 ^b , THF, rt, 24 h	68
8	i-Pr	ZnBr2 ^b , THF, reflux, 6 h	58
9	i-Pr	ZnBr2 ^c , THF, rt, 48 h	52
10	i-Pr	CsF ^b , THF, rt, 14 h	66

 a The structure of these acids was confirmed by $^1\,\text{H}$ - N.M.R. comparison with authentic samples.

^b 10 %.

^C l equivalent.

REFERENCES AND NOTES

- 1 C.G. Butler, R.K. Callow, N.C. Johnston, Proc. Roy. Soc., (B), 155, 417 (1961).
- 2 G. Jones, Org. Reactions, 15, 204 (1967).
- 3 P.A. Grieco, C.L.J. Wang and S.D. Burke, J. Chem. Soc. Chem. Commun., 537 (1975).
- 4 G.A. Koppel and M.D. Kinnick, Tetrahedron Lett., 711 (1974).

- 5 P. Coutrot, M. Snoussi and P. Savignac, Synthesis, 133 (1978).
- 6 H.O. House, Modern Synthetic Reactions, W.A. Benjamen, 649 (1972).
- 7 L. Lombardo and R.J.K. Taylor, Synthesis, 131 (1978).
- 8 M. Bellassoued and M. Gaudemar, J. Organometal. Chem., 263 (1984) C21.
- 9 J.E. Dubois, G. Axiotis and Bertounesque, Tetrahedron Lett., 25, 4655 (1984).
- 10 M. Bellassoued, J.E. Dubois and E. Bertounesque, Tetrahedron Lett., 27, 2623 (1986).
- 11 M. Bellassoued, R. Ennigrou and M. Gaudemar, J. Organometal. Chem., 338 (1988) 149.
- 12 M. Bellassoued, J.E. Dubois and E. Bertounesque, Tetrahedron Lett., 29, 1275 (1988).
- 13 L. Matsuda and Y. Izumi, Tetrahedron Lett., 1805 (1981).
- 14 H. Emde and G. Simchen, Synthesis, 867 (1977) and 1 (1982).
- 15 M. Bellassoued, J.E. Dubois and E. Bertounesque, Synthetic Commun., 10, 1181 (1987).
- 16 A typical experiment is as follows : LDA was prepared under nitrogen atmosphere as described in reference¹⁷ from phenanthrene (4.6 g, 25 mmol), diisopropylamine (21.2 g, 0.21 mol), hammered lithium (1.4 g, 0.2 mol) in ether (40 ml)-THF (40 ml). To this solution, α -trimethylsilyl trimethylsilylacetic ester (36.7 g, 0.18 mol) in 20 ml of THF was added at -78° in 15 mn and the solution was stirred at the same temperature for 1 h. Then chlorotrimethylsilane (21.7 g, 0.2 mol) was added in 5 mn at -78°. The reaction mixture was then allowed to reach room temperature overnight. The precipitate was filtered off on celite, the solvent evaporated and the product distilled in vacuo (b.p. 86°/10 mm Hg; Lit.¹³ 82-84°/10 mm Hg).
- 17 F. Gaudemar-Bardone and M. Gaudemar, Synthesis, 463 (1979).

(Received in France 7 June 1988)